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Intercrystalline cracking, grain-boundary 
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high temperatures 
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The hypothesis of an interrelation between grain-boundary sliding and delayed elasticity 
in polycrystalline materials at high homologous temperatures is used to investigate the 
conditions conducive to microcracking. It is known that a material may exhibit cracking 
activity on attaining a critical delayed-elastic strain corresponding to a critical grain- 
boundary sliding displacement. Experimental data on ice at temperatures > 0.9 Tm are 
used to verify this concept. The new criterion is then extended to develop simple, self- 
consistent equations describing the interdependence of stress, strain, time, temperature, 
and grain size in predicting the onset of structural degradation due to microcracking and 
hence possible failure by fracture or rupture. The merit of the theory lies in its ability to 
forecast explicitly a large number of commonly observed high-temperature phenomena, 
including superplasticity, brittle-ductile transition, and the stress and temperature 
dependence of the apparent activation energy for fracture. One derivation makes 
clear that cracking occurs when a critical stress depending only on temperature (and 
independent of grain size) is exceeded. The near constancy of fracture strain in the 
quasi brittle range can also be predicted 

1. Introduction 
Intergranular fracture in polycrystalline materials 
is commonly observed at homologous tempera- 
tures greater than about 0.3 to 0.4 Tin, where Tm 
is the melting point [1-4]. This mode of failure is 
characterized by low ductility, as measured by the 
strain at failure, and is often referred to as high- 
temperature brittleness. Initiation, growth and 
coalescence of intergranular cavitives or cracks 
are the three predominant stages leading to inter- 
granular fracture at elevated temperatures [5-9]. 
Nucleation of cavities or cracks has frequently 
been observed at triple points, grain-boundary 
junctions and irregularities, or at inclusions on 
grain boundaries. 

Several mechanisms have been proposed in the 
last four decades as the cause of various types of 
failure [10], many involving the phenomenon of 
grain-boundary shear or sliding [11-13]. An early 
proposal was that grain-boundary sliding results 
in elastic stress concentrations at grain interface 
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junctions or triple points, producing wedge-type 
cracks [11]. Grain-boundary sliding in conjunction 
with intragranular slip, forming ledges or steps in 
grain boundaries, may also nucleate cavities [12, 
13]. That it plays an important role in cracking 
activity during high-temperature deformation has 
already been established by Intrater and Machlin 
[141. 

Sinha [15] has related the strain from grain- 
boundary sliding to delayed elastic effect. The 
present paper explores this possibility further and 
examines the link, if any, between microcracking 
at elevated temperature and delayed elasticity. 
The term "microcrack" is defined as an opening 
in the material, one dimension being much less 
than the other two, and the largest dimension com- 
parable to the size of the grains of the material. 
There are three major points to keep in mind: 
(a) because of the limited number of slip systems 
in hexagonal materials such as ice, sliding and sub- 
sequent cracking are thought to play an important 
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role in their deformation behaviour; (b) the trans- 
parency of ice and the usually" large grain size 
facilitate direct visual observation of  the formation 
of microcracks; (c) the fact that extremely high 
homologous temperatures can be reached with 
relative ease and that pertinent information is 
available makes ice an attractive material for 
study of the failure process. 

To simplify anaIysis and subsequent presen- 
tation, discussion is restricted to the development 
of the first axial microcracks under uniaxial loading 
conditions and the beginning of cracking activity 
during constant load deformation. This article 
links microstructural observations to the larger 
scale manifestations of  deformation behaviour 
and fracture. In this way the phenomenological 
approach that has been described as a "black box" 
by McLean et aL [16] may, for ice, be more of a 
"grey box." 

2, Preliminary considerations 
Where grain-boundary diffusion processes do not 
make a relatively significant contribution, grain- 
boundary sliding could result in elastic stress con- 
centrations at grain-boundary junctions or triple 
points [17, 18]. This mechanism was originally 
proposed by Zener [11] to explain wedge-type 
cracks. Stroh [19] showed that the minimum 
shear stress, r~,  needed to produce a crack at the 
end of a sliding interface of length L is 

t123`G] 1/~ Tm-- (1) 

where 7 is the surface free energy and G the shear 
modulus. McLean [20] used the above relation 
for intercrystalline cracking by identifying L with 
the length of the grain boundary. 

7 should actually be the effective fracture sur- 
face energy; and the appropriate energy to be used 
for boundary crack produced in a brittle manner, 
as pointed out by McLean [20], is the difference 
between the surface free energy with respect to 
vapour, 7~, and half of the grain-boundary free 
energy, 7gb, giving 

am [.12G(Vvs--Tgb/2)_ll/2 
= T = t J (2) 

where am is the equivalent normal stress. 
Usually Equation t,  known as the Stroh-  

McLean equation, is used because information on 
3`gb is not available for most materials. There is 
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experimental evidence for many materials of a 
critical stress below which cracks do not form 
readily and this supports the Stroh-McLean 
relation. 

If for ice, "rvs = 0.109 J m -2, 7gb = 0.065 J m -2 
at 0~ [21], and G = 3.8GNm -2 (derived from 
G =El2 (1 + v) using E = 9.5 GNm -2 Poisson's 
ratio v = 0.3), then for L = 4mm, Equation 2 
gives r m = 0 . 5 3 M N m  -2 or a uniaxial normal 
stress am of I MNm -2. This agrees well with 
Gold's [22] observation of minimum stress of 
about 0.6 MN m -2 at which cracks form in uniaxiat 
compressive creep for ice of similar average grain 
diameter at -- 5 ~ C. 7gb should, of course, depend 
on relative crystallographic orientation of  the 
interfaces and should affect 7" m accordingly, but 
this information is not yet available. 

Microseismic activities in ice during strength 
and deformation tests were correlated with crack- 
ing activity in ice by Sinha [23] using a locator 
system of acoustic emission. Following loading, 
there is a long period of silence before the initiation 
of cracking activity. The rise times of the discrete 
bursts of acoustic signals, corresponding to visible 
cracks, were very short, in the order of a few 
milliseconds. The cracks appear to form suddenly 
(to the nakec~ eye) and grow to their full size in a 
very short time. Under these conditions, dissipation 
of energy due to local plasticity or creep at the 
crack tip may not be significant. If this is so, then 
the effective fracture surface energies for the 
formation of the cracks may not be different from 
the surface energy. Such a possibility is supported 
by measurements of fracture toughness (KIe) 
for polycrystalline ice by Goodman [241, who 
found that the strain energy release rate was not 
much greater than twice the surface energy for 
/~Ie >600kNm-3/zsec-1 or fracture times less 
than about 20 sec. This is more than a thousand 
times larger than the rise times of the visible cracks 
described above. It may explain the fair agreement 
between the experimental observation of Gold 
[22] and the calculations shown above. The 
disadvantage of Equations t or 2 is that neither 
gives information on time of fracture. 

The model of a wedge crack formed by dis- 
locations on two intersecting planes, proposed by 
CottreU [25], describes the stable crack length, 
a, normal, to the applied stress as 

_ 4G7 [ aw ( 1 1  -- ~v~1/21 (3) t2 
rr(1 -- v)a 2 43' ~7]  j" 



The condition for instability is given by 

ow i> 27, (4) 

where o is the applied stress and w is the wedge 
displacement or opening. A crack will therefore 
grow in a stable manner until w reaches a critical 
value, 

w ' =  27/0. (5) 

Williams [26] suggested the use of  Equation 5 
for intercrystalline cracks. Using an a lumin ium-  
20% zinc alloy, grain size of  1 mm at 200 ~ C, he 
noticed that a triple-point crack grew steadily at 
first and then accelerated in an unstable manner 
before it reached the adjacent grain-boundary 
junction. Williams estimated 3' from Equation 5 
and the observed values of  w', and obtained a con- 
sistent value nearly independent of  applied stress. 
He also measured the sliding of  the grain bound- 
aries, x directly associated with the wedges in 
question and noticed a direct relation between x 
and wedge height 

x = w .  ( 6 )  

Williams' observations bear close resemblance 
to those of  Gold [22] and Sinha [23] on the 
nature of  the formations of  cracks. The long 
period of silence noted in ice experiments before 
the initiation of  cracks large enough to be visible 
to the naked eye could be linked to the period 
before unstable crack growth occurred in Williams' 
experiments. This similarity, together with the 
important observations given in Equation 6, 
encourages one to explore the possibilities of  the 
following analysis. 

From Equations 5 and 6 and replacing 3, by 
( 3 ` w -  3`gb/2), the critical gram-boundary sliding 
for instability of  intergranular crack is 

x '  = 2(3`vs -- 3`gb/2)/o. (7) 

The strain, egbs, induced by grain-boundary 
sliding (gbs) is usually given by [2, 27] 

= ( 8 )  

in which ff is the average grain-boundary displace- 
ment,  d the average grain diameter, and K the 
averaging factor nearly equal to unity. 

If 2 '  is the average critical gbs for instability of  
cracks, then from Equation 8 the corresponding 
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cri t ical  egbs is 
t 

egbs = K2'/d. (9) 

From Equations 7 and 9, 

e gbs' = 2K(3'vs -- ",&b/2)/od. ( I0)  

T A B LE I Creep parameters for ice obtained indepen- 
dently from earlier cleep experiments and other necessary 
information 

, , r l  

E =9 .5GNm-2 ;G=3 .8GNm -~ 
Q = 67kJmo1-1 (16kcalmol-') 
c a = 9 
d I = 1ram 
s = 1  
n = 3  
b = 0.34 
aT (T = 263 K) = 2.5 X 10 -4 sec -I 
iv~ = 1.76 X 1 0 - T s e c - i ; a  1 = 1MNm -2, T =  263K 
Mx = (1.67 +- 0,10)10 -3 
m 1 = (4.55 _+ 0.41)10-6K -1 
~vs = 0.109 Jm -2 at 273 K 
~gb = 0.065 J m -2 at 273 K 

Equation 2 gives rm or Om in terms of  L or 
grain size, assuming L is equivalent to grain 
diameter, d. Equation 10, on the other hand, gives 

t 

egus in terms of  stress and grain size. Equation 10 
! 

and Table I give, as an example, egUs = 3.8 x 10 -s 
for a = l M N m  -2 at 0 ~  and d = 4 m m .  This, 
according to Equation 9, gives 2 ' = 0 . 1 5 ~ m .  
Although Equations 9 and 10 do not give any 
information on time of  cracking, it is inherent in 
the derivation that an incubation time is involved 
before the critical gbs displacement or strain is 
reached. 

Sliding is a complex process depending markedly 
on external conditions of  stress and temperature 
and on internal properties such as the crystalline 
structure of  the matrix and the defects, fabric of  
the material, grain size and its distribution, 
impurities in the material and inclusions at the 
grain boundaries. As resistance to boundary sliding 
increases with the onset of  serrations in the grain 
boundaries, i.e. because of  intragranutar slip, the 
duration of load application and hence the total 
deformation also play an important  role. So far, 
there is no substantive evidence in the literature 
that there is a critical gbs strain for the initiation 
of cracking activity, but the above analysis gives 
some incentive to examine the possibility. An 
indirect approach will be taken, but first a series 
of experiments and the conclusions drawn from 
them will be described. 

3 .  E x p e r i m e n t a l  d e t a i l s  

Using large transparent specimens (5 cm x 10 cm • 
25 cm) of  transversely isotropic, columnar-grained 
ice subjected to a constant compressive load 
applied perpendicular to the long direction of the 
grains, Gold [28] noted the formation of the first 
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Figure 1 Dependence of time 
to the formation of first cracks 
on stress, T=  268K (--5 ~ C). 
Experimental results are from 
Gold [28, 29]. 

large cracks at -- 10 and -- 31 ~ C to be a reasonably 
well defined event in previously undeformed 
specimens. As formation of cracks was observed 
visually in a cold room, it was decided to record 
the time of  formation of  the first three cracks 
to obtain a better measure of  the beginning of  
cracking activity; further experiments were carried 
out at - - 5 ,  -- 10, - 15 and -- 31 ~ C [22, 29]. 
These cracks were said to be greater than 1 to 
2 m m  wide and 2cm long. The cross-sectional 
diameters of  the grains perpendicular to their 
long axis were reported by Gold to be in the range 
of  1 to 6 mm, the longer dimensions of  the cracks 
being parallel to the axis of  the columnar grains. 
The cracks therefore fall into the category of  
"microcracks," defined earlier. Experimental 
results are shown in Figs. 1 to 4, and are similar to 
the Zhurkov type dependence of tensile failure 
time on stress for metals and alloys [30]. Gold 
[22, 29] noted this similarity and presented the 
dependence of  first crack time, tf, on stress a as 

tQ'- ~ tf = t o e x p [  k T  ] = A(T) e x p ( - - B a a )  

(11) 

where to, A, B and a are constants and Qf is the 
apparent activation energy for crack formation at 
zero stress. The temperature is T (Kelvin) and the 
Boltzmann's constant, k. Considerable deviation 
from the above relations was noted for the results 
at the lower end of  the stress and temperature 
ranges. Cracks were noted to form only when stress 
exceeded a limiting level of  about 0.6 MN m -2. 

Gold [22, 29] discussed the nucleation of  the 
cracks on the basis of  stress concentrations pro- 
duced by pile-up of  dislocations against grain 
boundaries. Using a relation proposed by Smith 
and Barnby [31] he obtained good agreement 
between the computed minimum stress for crack 
initiation and experimental observations. To 
obtain agreement in predicted strain, however, 
it was necessary to take into account the fact 
that stress must exceed a critical value before 
cracks form. Gold [29] also pointed out that the 
deviation from that predicted by the simple dis- 
location mode l  became significant the lower the 
stress and temperature. It should be remembered 
that the observed minimum stress for cracking 
can also be predicted by the Stroh-McLean 
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Figure 2 Dependence of time 
to the formation of first cracks 
on stress, T= 263 K (-- 10 ~ C). 
Experimental results are from 
Gold [28, 29]. 

equation, so that the relative importance of the 
two mechanisms of crack initiation is not clear. 

3.  1. M i c r o s t r u c t u r a l  a n a l y s i s  
A few creep experiments were conducted on large 
specimens (5 cm x 10cm x 25 cm) of columnar- 
grained ice following procedures already described 
[32]. The ice was completely transparent, with a 
density of 917.7 kgm -3 (at - - 9  ~ C). The specimens 
were unloaded as soon as possible after the for- 
mation of the first large cracks completely inside 
the specimen (i.e. cracks that did not propagate 
to the specimen surface). This was to ensure that 
the observations would be made on cracks not 
produced by surface effect. The specimens were 
then sectioned through the crack, perpendicular 
to it, and large replicas (10 cm x 10 cm) were made 
by the method described earlier [33]. 

A particularly interesting intercrystalline crack 
is shown in Fig. 5. It and a boundary associated 
with it were nearly parallel to the applied com- 
pressive load axis. Extension of the crack inside 

the neighbouring grains was mainly caused by the 
compatibility of the crystallographic axes of 
these grains with respect to applied load and crack 
propagation. The crack propagated in a direction 
parallel to the basal plane in the grain, on the left 
side (as indicated by the dislocation etch pits), 
but it extended in the plane parallel to the [0 0 0 1] 
axis on the right. These preferences of planes for 
crack propagation are consistent with those 
observed by Gold [34, 35]. The absence of any 
pattern in the distribution of dislocations in the 
crack tip area, as indicated by the elongated etch 
pits, seems to provide yet another example of 
cracking without a damage zone [36]. 

As the chosen loads were sufficient to pro- 
duce cracks during this series of creep tests, it 
would be expected that various stages of pile- 
up would be apparent. The absence of any such 
dislocation pile-ups around the cracks in hundreds 
of grains is evidence that first cracks may not be 
produced by the stress concentration resulting 
from pile-up. 
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Figure 3 Dependence of time 
to the formation of first cracks 
on stress, T= 258K (-- 15 ~ C). 
Experimental results are from 
Gold [28, 29]. 

3.2. Critical de layed  elastic cr i ter ion 
A non-linear viscoelastic model incorporating 
grain-size effect was proposed by Sinha [15] to 
describe the initial high-temperature creep of 
polycrystalline materials. The recoverable portion 
of the creep strain was assumed to be a delayed 
elastic effect associated with grain-boundary 
sliding. Assuming, for simplicity, that delayed 
elastic strain (des), ed, is related to gbs strain by 

ed = egbs, (12) 

it was shown that 

. :  

(13) 

where E is Young's modulus, t is time, d is grain 
size, and b and s are temperature independent 
constants. The constant cl corresponds to the 
unit or reference grain size dl.  The modulus, E, 
associated with primary bond distortion or average 
of lattice deformation was found to be practically 
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independent of time and only slightly dependent 
on temperature [32]. Temperature dependence of 
delayed elasticity was found to be governed by 
the inverse relaxation time, aT, given by 

aT2 = aT~ exp ~ -- (14) 

where Q and R are activation energy and gas 
constant, respectively, and 7'1 and T2 are tempera- 
tures in Kelvin. 

Equations 13 and 14 have a number of empirical 
constants. One can raise the objection that suitable 
numerical values can be assigned to fit any result. 
It was decided, therefore, to use values determined 
from a single set of constant load creep tests on 
ice of a known grain size [32] in applying the 
equations to Gold's [22, 28, 29] results for the 
present analyses (to be discussed later). These 
values were also used in examining the formu- 
lations developed to predict the deformation 
characteristics under widely varying, mono- 
tonically increasing stress histmaj during testing 
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Figure 4 Dependence of time 
to the formation of first cracks 
on stress, T= 242 K (-- 31 ~ C). 
Experimental results are from 
Gold [28, 29]. 

for strength of ice at different temperatures [37] 
and conducted with different test machines in 
different laboratories [38]. The good agreement 
in all these cases supports the creep model and 
the concept behind it. The values of the quantities 
are given in Table I and have been tabulated in 
this form also by Sinha [151. 

If there is a critical gbs strain for initiation of  
cracking activity and the assumption expressed 
by Equation 12 is not far from reality, one would 
expect a critical delayed elastic strain (des) for 
cracking. This hypothesis can be examined by 
applying Equation t 3 to all the experimental data 
in Figs. 1 to 4 and computing the corresponding 
e d . 

Results shown in Figs. 6 to 9 are calculated on 
the basis of Table I, assuming (to be clarified later) 
grain size d = 4.5 mm. The figures show clearly 
that the first large cracks form when (in contra- 
diction of the stress dependency expected from 
Equation I0) delayed elastic strain reaches a 
critical vatue, irrespective of  the applied level of 

stress in the load range studied. Although the 
scatter is large (-+ 10%), the average critical des, 
e~, for the formation of first cracks increases 
almost linearly with decrease in temperature 
(Fig. 10) and may be written as 

e~t = Ma- -maT  (15) 

where rn a is slope and Ma the critical des at 
absolute zero. Regressional analysis of all the data 
points gave Ma (d = 4.5 mm) = (3.70 +- 0.23) x 
10 -4 and m d = (1.01 -+ 0.09) x 10-6K -1. Con- 
venient alternative forms of Equation 15, with 
the above values for slope and intercept, are 
shown in Fig. 10. It is understood, however, that 
the relation is applicable only for temperatures 
a few degrees below the freezing point. 

As the calculations for ea were made with 
assumed d of 4.5 ram, the values of Ma and m a 
are appropriate for this grain size. The numerical 
value of ea for the reference grain size of dl 
(= I mm) will be given, by virtue of inverse pro- 
portionahty of des on grain size in Equation 13, as 
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Figure 5 First crack produced in ice at -- 10 ~ C under a stress of 1 MN m-2. (a) optical micrograph of the replica. Arrows 
indicate direction of [0 0 0 1 ] axis. (b) Scanning electron micrograph of the same replica. (c) and (d) SEM of the crack 
tip areas. 

e = e~,d/da = ( M l - - m l r )  e d  I 

= (Ma--  malT)did1 (16) 
so that 

M1 = Mdd/da and ml = mdd/dl 
or  

M1 = (1.67 + 0.10) x 10 -3 
and 

ml = (4.55 +- 0.41) x 10-6K -1. 

Equations 8, 12, 15 and 16 give the critical 
grain boundary displacement for the first cracks as 

fie = (ma--  mdT)d/K = (Ml--  mlT)dx/K.  

(17) 

The critical sliding, therefore, is independent of  
grain size and stress level. 
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Equation 15 gives e~ of  9.5 x 10 -s at 0 ~ C for 
d = 4 . 5 m m ;  correspondingly 2e, according to 
Equation 17 and with K =  1, is 0.43#m. These 
numerical values are, incidentally, comparable to 
the values of  e~us (= 3.8 x 10 -s) and x '  (= 0.15 
#m) calculated earlier from Equations 10 and 9, 
respectively. 

3 .3 .  Crit ical  t i m e  f o r  f r a c t u r e  
If  tfe is the time for the formation of  first cracks, 
then the application o f  the concept of  critical des 
criteria to Equation 13 and readjustment gives 

c, IJ (18) 
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From Equations 16 and 18 

cl \ a / j )  (19) 

This is independent of grain size. The arbitrary 

choice made earlier for d = 4.5 mm did not,  there- 

fore, affect the calculations and subsequent 

estimation of Mt and ml .  This choice was made 

because of the extensive grain size determinations 

carried out by the author during strength tests 

[39] on ice produced essentially by the method 

used by Gold [29]. Most of the ice had average 

cross-sectional grain diameters in the range of 

4 to 5 ram. 

Dependence of tfe on stress and temperature, 
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Figure 8 Computed delayed elastic strain for the formation of first three large cracks in S-2 ice of average grain diameter 
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calculated on  the basis of  Equat ion  19 and Table I, 

is shown in Figs. 1 to 4. These calculations seem 
to describe the experimental  results bet ter  than  

the straight lines, on  log - l inea r  plot,  given by 

expressions of  the type of  Equat ion  11, used by  
Gold [22, 29] and c o m m o n  in describing tensile 

failures in metals and alloys. The applicabil i ty of  
the present  formulat ion,  part icularly at the lower 

end of  the stress level, is of  considerable interest be- 
cause of  the possibility of  using it to predict a mini- 
mum stress for cracking and failure by fracture and 
therefore for the condition for superplasticity [40]. 

3.4. Minimum stress for fracture 
The minimum stress level, Ornin , required for 
cracking activity is the level of  load for which 
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t~ e = oo. Equation 19 gives, for this condition, 

omin = E( Ml-mtTtws. (20) 
\ C1 ] 

This indicates that (/rain is sensitive to temperature 
but independent of  grain size. Elastic moduli for 
single crystal ice increase about 5% in the tempera- 
ture range 0 to - - 3 0 ~  [41], indicative of  the 
additional influence of  temperature on Omi n 
through the temperature dependence of  the 
elastic modulus, E. According to Equation 13, 
increase in E with decrease in temperature will 
decrease M1 and ml ,  counteracting the effect of  
the temperature dependence of  E on O'mi n. The 
temperature dependence of  E (if known) must 
be taken into account in the calculations. 

Equation 20, with information in Table I, gives 
Omin of  0 .47MNm -2 (Crmin/E = 4.9 X 10 -5) and 
0 .59MNm -2 (ami,/E = 6.2 x 10 -s) at - -5  and 
-- 30 ~ C, respectively. This explains why Gold [28, 
29] did not observe cracking below 0.5 MN m -2, 
but did observe cracking activity in ice within the 
experimental times used for stresses at or greater 
than about 0 .6MNm -2. It is interesting that 

Zaretsky etal. [42] estimated this minimum 
stress to be 0.5 MN m -2 in the temperature range 
- -4  to -- 13 ~ C for columnar-grained ice containing 
grains varying in size from 2 to 12 mm. They used 
the technique of  acoustic emission for detecting 
cracking activity and called the minimum stress 
the "creep limit", meaning that for stresses higher 
than this level creep develops to an accelerating 
stage (commonly known as the tertiary stage), 
whereas for lower stresses creep rate tends to a 
limiting or steady-state value. 

The rate sensitivity of  the level of  stress for the 
onset of  cracking activity in transparent ice has 
been examined by Sinha [23], who did not  observe 
any effect of  grain size in the range of  2 to 5 ram. 
Strongest support for Equation 20, which indicates 
that O'mi n is sensitive to temperature but indepen- 
dent o f  grair~ size, comes from Currier [43]. When 
he conducted tensile strength tests on granular ice 
with average grain size varying from 1 to 7.3 mm 
at - -10  ~ C, he observed no grain size effect on 
the level of  stress at onset of  acoustic emission. 
Furthermore, the stress level was 0.44 +- 0.17 MN 
m -2 for average strain rates during testing in the 
range o f  about 1 x 10 -6 sec -1. 
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Eliminating E from Equation 19 by substituting 
its value from Equation 20, 

Equation 21 readily shows whether a given stress 
will produce any cracking activity during a given 
period of loading if stress exceeds Orrain . This may 
be preferable to Equation 19 in presenting the 
dependence of t~ e on a. 

3.5, Strain at first crack 
Total strain, ere at the time of formation of first 
cracks, t~e, will be given by 

= K e + ev, tfe (22) ere E + ed 

where the first term is the elastic strain ee, the 
second the critical des, and the third describes the 
viscous component, ev. This is according to the 
three-component creep model described in detail 
by Sinha [15]. In this, ~vl is the viscous creep rate 
corresponding to the unit or reference stress or1, 
and n is the stress exponent. Activation energy 
for viscous creep rate was found to be the same as 
that of des [32], and its temperature variation is 
also described by Equation 14, with evl replacing 
aT. Values obtained for ev~ and n from previous 
experiments and discussed by Sin_ha [15] are given 
in Table I. 

Viscous creep rate was assumed to be indepen- 
dent of grain size [15] for conditions where the 
intergranular accommodation is not governed by 
the grain-boundary diffusional process and where 
the mlcrostructure has not deteriorated because 
of voids, cracks or recrystallization, that is, small 
strain. The insensitivity of viscous strain to grain 
size of 1 to 10ram of ice has since been reported 
by Duval and LeGac [44]. Under these conditions 
the grain-size influence on fracture strain is deter- 
mined mainly by the dependence of e~ on d. 

Calculations based on Equation 22 are shown 
in Figs. l l a  and b for grain size of 4.5mm. Finer 
grained ice would have a larger contribution from 
e~ and the curves would be shifted in the direction 
of larger strain. Sharp decrease in total strain is 
mainly caused by decrease in viscous strain (Fig. 
1 la). As the viscous strain approaches a negligible 
value and the elastic strain increases with stress, 
the predicted total strain actually goes through 
a minimum (as may be seen in Fig. l la), although 
it might appear to reach a constant value (Fig. 
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1 lb). The number of experimental results shown 
are not considered significant, but trends in the 
theoretical prediction agree well with measure- 
ments. Fig. l la indicates that cracking activity 
involves some energy dissipation through viscous 
flow even at the highest stress level examined 
because of small but finite values (about 1 x 10 -4) 
for viscous strain. 

4. Discussion 
Formation of the first crack in compression does 
not determine the ultimate failure strength. It 
indicates, however, the beginning of internal 
damage that might lead to cleavage failure in 
tension if the applied load is sufficient to propa- 
gate the crack beyond the boundaries of the 
grains. An estimation of the applied load for such 
failures was made by Gold [45] using Griffith's 
criterion 

/ 2E \u2 
= I b (23) oe \ ~l / 

where 2l is the crack length. 
Using the values for 7vs and E in Table I and 

crack length of 1 mm (the width reported by Gold 
[28, 29], as = 1.2MNm -z (a~/E = 1.2 x 10-4). 
This level of stress may therefore be sufficient to 
initiate a crack in 10 rain at -- 10 ~ C (Fig. 2) and 
propagate it to failure if applied in tensile mode 
at the high temperatures considered. No tensile 
creep rupture data on columnar-grained ice are 
available for examining this aspect of the analysis. 
Burdick's observations [46] on randomly oriented, 
fine-grained ice conform well, however, with the 
above predictions. He examined the tensile creep 
failure of dumb-bell-shaped snow ice with average 
grain diameter of 0.7 mm at -- 9 ~ C (0.97 Tin) in 
the stress range of 0.7 to 1.56MNm -2. He noted 
a specimen with an initial stress of 0.7MNm -2 
that lasted up to four days, whereas specimens 
with initial stress of 1.56MNm -2 fractured in less 
than a minute. Burdick stated that no specimens 
with an initial stress of less than 1.2 MN m -2 failed 
before 100min and that some were eventually 
extended to 100% of their original length. He also 
noted that "visual inspection did not reveal any 
significant flaws in the early failure samples", 
which may be interpreted as evidence that the 
first few cracks led to failure. 

According to the calculations in Fig. 1, a stress 
level of 1.2 MN m -2 generates a crack at tfe = 3 x 
102sec for - -5~ and ere =3 .9  x l O  -4 (Fig. 11) 
for the coarse grain size of 4.5 mm. The average 
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strain rate to fracture is e~e = e~e/t~e = 1.3 x 10 - 6  

sec -1. Fig, 11 shows that higher stresses do not 
affect ere appreciably, although corresponding 
reduction in tte would greatly increase e~e- Finer 
grain size would result in a larger contribution of 
delayed elastic strain to the total strain and would 
tend to increase eee further. Calculations give, for 
example, efe = 8.6 x 10 -4 and tfe = 48 sec (Fig. I) 
for the initial stress of 2MNm -2 at - -5~ for the 
grain size of 0.7 mm, giving ere = 1.8 x 10 -s sec -1. 

Strain-rate sensitivity, or rather relative insen- 
sitivity, of tensile strength of coarse-grained (3 to 
4mm) columnar-grained ice observed by Carter 
and Michel [47] and of fine-grained (0.7mm) 
granular ice examined at high strain rates by 
Hawkes and Mellor [48] corroborates these values. 
One example from the latter investigation is an 
average tensile strength of 2.1MNm -2 (ten 
specimens) tested under a reported average strain 
rate to peak stress of 1.3 x 10 -s sec -1. The samples 
failed at an average fracture time of 49.7 sec, with 
an average failure strain of 6.6 x 10 -4. These tests 
were carried out on dumb-bell-shaped specimens 
at --7~ under constant crosshead rates using a 
conventional screw-driven machine. The obser- 
vations compare favourably with calculations 
given in the previous paragraph. 

A few aspects of the calculations shown in 
Fig. 11 are worth mentioning. 

1. For a given temperature and grain size, ere 
decreases sharply over a narrow range of stress, 
indicating an apparent transition from ductile to so- 
called "brittle" behaviour (the term commonly, and 
often ambiguously, used for failures at low strains). 

2. The transition stress range and corresponding 
range of strain decrease with increase in tempera- 
ture, indicating a shift in apparent brittleness 
(usually with respect to failure strain) to lower 
stress and higher temperatures. 

3. Not shown but visualized is the increase in 
strain (particularly noticeable at higher stresses) 
with decrease in grain size, an indication of 
increasing brittleness with increasing grain size. 

4. There is a level of stress below which the 
material will flow to a large strain without 
producing intergranular cracks by the process 
discussed here. The conditions favourable for this 
"stress controlled" superplastic flow are high 
temperatures and low stresses, as illustrated, and 
fine grain sizes. 

5. At stresses greater than the transition range, 
the strain to the formation of the first crack 
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approaches nearly constant value, and for this 
condition "strain-controlled" fracture may appear 
to be nearly independent of temperature in a 
small range of temperatures. 

These observations have actually been made in 
polycrystalline materials in general, and failures 
have been characterized as "cracking" or "rupture" 
processes [49]; they could be described as "strain 
controlled" or "stress controlled". 

A quick survey of fracture maps compiled by 
Ashby etal. [10] and Gandhi and Ashby [50] 
reveals that failure by intergranular cracking 
commonly occurs above alE=5 x l0 -s and is 
therefore similar to that in ice. At these low stress 
levels (still too high for pure diffusional creep to 
dominate) formation of several cracks or some 
degree of damage may be required before a 
specimen will fail in tension. Nonetheless, failure 
strain, as indicated in Fig. 11, could be large, 
consisting mainly of viscous strain, i.e. the contri- 
bution of the third term in Equation 22, as can 
be seen in Fig. l la. Phenomenologically, one 
might conclude that such failures are controlled 
by power-law creep. Relations of the type, 
tf~ v = constant, where tf is failure time and ev 
viscous creep rate, are common [8]. Another 
important aspect to be noted from Fig. l la is 
the significant contribution of delayed elastic 
strain and viscous strain to total strain at or higher 
than the so-called ductile-brittle transition stress 
range. This points out that such failures do not 
indicate pure elastic loading conditions and hence 
might be far from truly brittle failures. 

The present discussion would be incomplete if 
other derivations from the present formulations 
on the subject of activation energy for fracture or 
of deformation processes involving cracks were 
not included. Suppose t~e and t~e are the times 
for the first cracks at temperatures 7"1 and T2, 
respectively, for a given stress or. The apparent 
activation energy, Q~c, for the first cracks will 
be given by; 

-/~ (l/r:)] (t~c]__ Qfe = [(1/2"1) In t-~e.]" (24) 

Substituting t~e and tie from Equation 19 into 
Equation 24 gives 

R 
Qfc = [ ( 1 / r l )  - -  (1/T2)] (25)  

x ln/a~T {ln { 1 -  [(/141--ml TI)/Cl](E/17) s} ll/b/ 

[a%ltln {1 [(MI--m,T:)IcII(EI•)S}] J" 
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Figure 12 Predicted stress and temperature dependence of apparent activation energy associated with the formation of 
first crack. 

Substituting Q from Equation 14 into Equation 
25 gives 

R 
Q~e = Q + b [(1/T 0 -- (1/T:) 

[ in U m, t 
x In \ in {1 - [(M, - ml r2)/e,l(E/o)s}]" 

(26) 

Calculations made on the basis of Equation 26 
and Table I are shown in Fig. 12 for two ranges of 
temperature, 228 to 233 K (--45 to --40 ~ C) and 
263 to 268K ( -  10 to --5 ~ C). Fig. 12 shows that 
Q,c could be greater than the creep activation 
energy, Q, involving no cracks and furthermore 
could depend on stress and temperature. It must 
be pointed out that the numerical value for Q 
assumed here is not different from the activation 
energy for self-diffusion [22, 51, 52], although 
creep in ice may not be diffusion-controlled but 
glide-controlled [53], and was determined by 
Sinha [32] for the range --44 to -- 10 ~ C (0.84 Tin 
to 0.96 Tin)using o = 0.5 MNm-2(o/E = 5 x 10 -5) 
to avoid any cracking activity. Gold's original 
observations [22] on the dependence of apparent 
crack activation energy on stress and temperature 
and Ramseier's [52] observations on creep acti- 

vation energies involving cracks are therefore con- 
sistent with the present calculations. Introduction 
of temperature correction in E would, of course, 
alter the calculated results slightly. 

In discussing the activation efiergy for steady- 
state, or rather minimum, creep rate of  polycrystal- 
line ice experimentally determined high values 
above -- 10 ~ C (0.96 Tin) were treated by Weertman 
[51] as unrealistic. Examinations of experimental 
conditions used, for example, by Glen [54] and 
Barnes etal. [55] indicate that the load level 
(alE> 5 x 10 -s) must certainly have caused the 
formation of cracks during experiments. Activation 
energies (see Fig. 12) in the range of 130 kJ mo1-1 
(30 kcal mo1-1) obtained by the investigators could 
very well be due to degradation of the structure 
as a result of internal voids. The response of ice 
during strength testing [39, 56], involving a mixed- 
mode deformation process, can be properly 
analysed only after clarifying the effects of crack- 
ing activity and cumulative damage on the texture 
and fabric of the ice, due to both constant and 
variable stress-loading conditions. These will be 
considered in a future publication. It should, how- 
ever, be mentioned that the prediction made by 
Equation 26 and illustrated in Fig. 12 seems to be 
applicable, in general, to other materials also [30]. 
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For example, the decrease in apparent activation 
energy with increase in stress at higher tempera- 
tures and its greater value at higher temperature, 
reported by Vagarali and Langdon [57] for poly- 
crystalline magnesium, bear close resemblance to 
that of Fig. 12. 

If O'min, Ta and Omin, T2 are, respectively, the 
minimum stresses for, cracking at T1 and T2, then 
Equations 20 and 26 give 

R 
Qfe = Q +  

b[(1/T1) - (1/T2)] 

ln [1 --(amin, Ti/O)s]t (27) 
xln In [1 (amin, T2/a)s])" 

Variation of Q~c with stress and temperature is 
therefore linked with the temperature dependence 
of Omi n .  According to Equation 20, Omi n varies 
from 0.47MNm -2 at - -5~ to 0.59MNm -2 at 
--30 ~ C. This 25% increase is directly associated 
with a similar increase in e~, as may be seen from 
Equation 16 or Fig. 10. But a 5% increase i nE in  
this temperature range will only account for 
about one-fifth of the 25% increase in Omi n or e~ 

(and therefore in the minimum grain-boundary 
displacement for cracking). The remaining increase 
could very well be explained by the increase in 
(Tvs -  3'gb)/2 in the temperature range considered 
[41]. 

5. Summary and conclusions 
1. The high temperature grain-boundary 

embrittlement phenomenon in polycrystalline 
materials has been analysed to show the possibility 
of the onset of cracking activity on attaining a 
critical grain-boundary sliding displacement, 2'. 
This is correlated with a critcal grain-boundary 

r 

sliding strain, egbs, and hence with a critical 
delayed-elastic strain, e ~. 

2. Constant stress creep cracking observations 
on ice in conjunction with a previously developed 
rheological equation have been used to test the 
above hypothesis in the temperature range of 0.89 
T m to 0.98 Tm and stress range, a, of 6 x 10-SE 
to 2 • 10 -4 E. It is found that e,~ for crack initiation 
is independent of stress in the range studied, but 
increases with decrease in temperature and is 
inversely proportional to grain size. The critical 
grain-boundary displacement, 2' (=0.47/~m at 
0.96 Tin), increases with decrease in temperature 
but is independent of stress and grain size. 

3. The above criterion was applied in formulat- 
ing explicit interrelations for a, t, d, cracking time 
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t~ e and the corresponding strain e~e. The equation 
developed for the dependence of t~e on a has been 
shown to represent the experimental observations 
better than a purely empirical Zhurkov-type 
relation. In addition, it predicts that cracking 
activity occurs on exceeding a critical stress, Omin,  

at a constant temperature and that t~e is indepen- 
dent of grain size. 

4. Stress, temperature, and grain size depen- 
dence of strain to the formation of cracks, e~e, 
show the existence of a region of brittle-to-ductile 
transition and predict superplasticity for stresses 
below O'mi n. It is shown that both stress and strain 
at transition decrease (hence a measure of increase 
in brittleness) with increase in temperature for a 
constant grain size. There is also an increase in 
brittleness with increase in grain size. the con- 
ditions predicted to be favourable for "stress 
controlled" superplastic flow are high tempera- 
tures, low stresses and fine grains. The formulations 
also predict a commonly observed phenomenon - 
a nearly constant strain at fracture in the so-called 
brittle range. 

5. Formulations have been developed to show 
the commonly observed dependence of the 
apparent activation energy for cracks (or fracture) 
on stress and temperature. This can be predicted 
from the creep activation energy (which is close 
to the activation energy for self-diffusion or glide) 
and the temperature dependence of O'min, the 
minimum stress for cracking. The temperature 
dependence of amin, on the other hand, is deter- 
mined by the temperature dependence of E, 
Young's modulus, and the surface free energy. 

6. It is shown again [56] that ice can serve as a 
good model material for strength and deformation 
studies at high homologous temperatures. 
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